摘要
针对现有基于马尔科夫随机场的图像分割算法容易出现过分割、分割结果不理想等问题,提出了一种基于马尔科夫随机场与区域合并的图像分割改进算法。该算法首先基于马尔科夫随机场与高斯混合模型理论的图像分割算法得到初始分割结果;然后利用各个区域间的相邻关系、颜色关系以及边界情况等信息,给出各个区域间的距离;最后按照区域间的距离与区域合并前后的颜色散度变化率对初始分割结果进行区域合并,输出最终的分割结果。使用伯克利标准图像库进行实验仿真,采用Dice系数和Jaccard系数作为评价指标。仿真结果表明,相比于现有基于MRF理论的算法,本文算法具有更好的分割效果。
- 单位