摘要

锂离子电池健康状态(State of Health, SOH)是锂电池退役的重要指标之一,为快速估计锂电池SOH,文章利用长短期记忆神经网络对非线性数据的高效预测能力,构建了一种双向神经网络预测模型。根据美国国家航空航天局(National Aeronautics and Space Administration,NASA)所提供的现有电池数据,将电容、电压、电流作为输入数据,建立电容、电压和电流之间的联系,再输入未经训练的测试集数据进行预测。实验结果显示,预测值平均绝对误差(Mean Absolute Error,MAE)为1.6%,整体误差较低,实现了SOH的快速估计。