摘要

针对挖掘入侵事件与人步行等干扰事件的识别问题,提出一种基于时频能量比的识别方法.利用时域的节律特征以及信号包络的时域冲击特征,剔除如车辆路过、自然环境干扰等事件.留下挖掘和人步行事件.对于挖掘和人步行事件的识别,首先,对事件信号进行时域窗分割;其次,将时域分割后的每个子信号输入到一组窄带滤波器中,并计算每个滤波器输出信号与输入的时域子信号的能量比值,得到信号的时频能量比特征.最后,利用SVM作为分类器,进行分类实验.实验表明,该方法提取的时频特征所包含的冗余特征数据量小,分类所需的时间短,分类识别的准确率约为94%.