摘要

为了解决3维稀疏数据处理中向量化或矩阵化带来的原始空间结构破坏与计算复杂度高的问题,该文针对下视稀疏线阵3维SAR成像几何模型和回波信号特点,构建了张量空间信号模型,提出了一种基于低秩张量补全的3维SAR稀疏成像算法。该算法首先利用回波张量的低秩性,通过张量补全重构稀疏回波中的丢失元素,再对补全后的全采样信号张量进行3维成像,从而获得高效率、低旁瓣、高分辨率3维图像。基于X波段下视稀疏线阵3维SAR点目标回波进行了3维成像仿真实验,比较了在不同信噪比和采样率条件下的成像性能,并基于实测数据进一步验证了该算法的有效性和优势。