摘要
针对现有特征选择方法中存在的收敛速度慢和计算效率低等问题,提出了一种基于樽海鞘群与粒子群优化的混合优化(hybrid optimization of salp swarm algorithm and particle swarm optimization, HOSSPSO)特征选择方法,该方法在樽海鞘群算法(salp swarm algorithm, SSA)的基础上,引入粒子群优化(particle swarm optimization, PSO),提高了SSA的收敛速度,改进了探索和开发步骤的效率,增加了解空间更多的灵活性和多样性,使得方法能够迅速获得全局最优值。为了验证算法的性能,在2个实验序列上进行了测试:第一个实验序列使用基准函数,将HOSSPSO与标准SSA、PSO进行了比较;第二个实验序列采用不同的UCI数据集,通过提出的算法确定最佳特征集。实验结果表明,相比于其他优化算法,HOSSPSO的性能更具优势,在多项评估指标中获得较好的效果,能以极少量的特征获得最大的分类精度。
-
单位四川文理学院