摘要
把实数域上的M对称矩阵的概念推广到四元数体上,形成M自共轭矩阵,然后在四元数体上讨论矩阵方程AXB+CXD=E的M自共轭解及其最佳逼近问题.利用四元数矩阵的实分解和复分解,以及M自共轭矩阵的特征结构,借助Kronecker积把约束四元数矩阵方程转化为实数域上的无约束方程,克服了四元数乘法非交换运算的困难,并得到该方程具有M自共轭解的充要条件及其通解表达式.同时在解集非空的条件下,运用矩阵的分块技术及矩阵的拉直算子,获得与预先给定的四元数矩阵有极小Frobenius范数的最佳逼近解.由于M自共轭矩阵是四元数自共轭矩阵的推广,因此所得结果拓展了该方程的结构解类型.
- 单位