摘要

现实场景中照相机获得的图像视场角范围往往是有限的,而目前对全景图像的需求日益增大,因此针对拍摄得到的全景图像序列,提出了一种基于参数回归的快速全景图像拼接算法。将传统的图像配准任务转化为深度学习结合机器学习的方式,设计一种基于高斯差分金字塔的多尺度深度卷积神经网络(MDCNN)对待拼接图像进行特征提取,并使用LightGBM回归模型对拼接参数进行预测,获得图像之间的变换矩阵和照相机焦距完成图像对齐,并设计了一种双曲线图像融合算法消除图像之间的拼接缝。实验结果表明,所提算法能够实现图像的快速拼接,获得比已有代表性算法更清晰自然的全景拼接效果,同时对红外图像也具有很好的适应性。