摘要

准确、完整地定位和分割脑肿瘤对脑胶质瘤患者的存活率以及治疗方案的确定起着决定性作用。在三维核磁共振影像(MRI)中,生成准确的注释需要大量的专业知识和时间成本,使用少量有标签数据与大量无标签数据进行半监督学习更加符合实际的临床场景与需求。为此,本文提出一种3DSEU-Net作为半监督模型中的教师与学生网络,该网络引入注意力计算,同时结合跳跃连接,以便获取三维医学影像中更加丰富鲁棒的结构与细节特征,训练过程中,教师模型通过不确定性量化,然后指导学生模型,使学生模型学习到置信度更高的结果,在仅有少量有标签数据的情况下学习到更多的知识,以提升模型的脑肿瘤分割精度。在仅有25个有标签数据的情况下,分割精度比全监督学习提升了12.9%,最高分割精度达81.41%,优于目前可同基准复现的6种半监督方法,证明了本文方法的可行性和有效性。