摘要
不正常航班恢复问题研究通常基于固定航班中转时间,忽视了实际航班中转时间的改变对航班恢复带来的影响。对此,依据全国235个机场的全部运营航班数据抽取机场-航班特征,构建了基于LightGBM的航班中转时间预测模型,预测航班的有效中转时间,数值结果显示,航班中转时间预测模型预测的均方根误差为6.783 min。构造了基于有效中转时间的不正常航班恢复模型,并针对性地设计了求解该模型的列向量生成算法,构造的模型通过取消、改变计划时间、更换飞机等方式,分别在最小化航班延误时间、取消个数、换飞机个数的目标下,解决机场流量下降、机场关闭、飞机维修等不正常条件下的航班恢复问题。通过航空公司实际运行数据测试证明,基于有效中转时间预测的不正常航班恢复技术有效,在大规模航班恢复的情况下,可以将总延误时间减少34.2%。将列向量生成算法与时空网络算法的结果进行对比,所提出的恢复方法能降低航班恢复代价。
- 单位