摘要
储层参数与横波速度之间存在一定的相关关系,但是这种复杂关系很难得到解析解。为此,构建了GRU(gated recurrent unit)神经网络方法,主要包括神经网络构建、数据预处理、样本训练和数据预测四个部分,通过训练神经网络逼近横波速度与储层参数之间的关系,利用纵波速度、密度和自然伽马等储层参数直接预测横波速度。采用D区的30口井的测井数据训练和测试神经网络,结果表明:①纵波速度、密度和电阻率对数与横波速度呈较好的正相关关系,自然伽马值、孔隙度与横波速度呈负相关关系。②对于多数井训练、少数井验证,训练数据预测的横波速度与真实值的相对误差和相关系数分别约为3.00%和0.9837,测试数据预测的横波速度与真实值的相对误差和相关系数分别约3.19%和0.9805;对于少数井训练、多数井验证,训练数据预测的横波速度与真实值的相对误差和相关系数分别约为2.49%和0.9867,测试数据预测的横波速度与真实值的相对误差和相关系数分别约3.92%和0.9686。因此所提方法具有较高预测精度和较强泛化能力。
-
单位中国石油大学(北京); 油气资源与探测国家重点实验室