摘要

本发明公开了一种基于特征感知和多通道学习的图像色差检测方法,包括:1)构建用于训练色差检测网络的训练集,色差检测网络由多通道学习模块、特征感知模块、区域建议网络和预测回归网络组成;2)将图像输入多通道学习模块,获取图像全面特征图;3)将图像全面特征图输入特征感知模块,得到感知加权特征图;4)将感知加权特征图输入区域建议网络,得到区块特征图;5)将区块特征图输入预测回归网络,得到色差偏移量及位置,与真实值计算损失,反向传播调整参数;6)迭代训练至预设值,确定色差检测网络;7)将待检测图像输入色差检测网络,获取色差偏移量及位置。本发明可实现对具有复杂纹理及图案的图像高速高精度色差检测。