摘要

针对局部二值模式(Local binary patterns,LBP)和梯度方向直方图(Histogram of Gradients,HOG)的联合特征,在行人检测中易受行人肢体偏转影响的问题,本文将傅立叶局部二值模式算子(Local binary patterns-HF,LBPHF)与HOG算子联合对行人进行特征描述。在每个滑动窗口中,分别计算HOG特征与LBPHF特征,将两者结合,构成联合特征。利用线性支持向量机训练分类器,通过自举法不断更新优化分类器,获得最优判别模型。将提取所得的联合特征输入分类器中进行判别,采用非极大值抑制的融合方法对重叠检测窗口进行融合。实验结果表明,LBPHF算子与HOG相结合的方法检出率高,计算复杂度低,抗行人肢体偏转干扰能力强。

全文