针对宫颈细胞图像的相似性极高,其细粒度分类存在准确率低的问题,提出了一种基于双路径网络与局部判别损失函数的DRMNet算法。该算法在特征提取阶段以残差结构为主体,加入密集连接路径,结合两者优点,使网络对特征有着高复用率、低特征冗余度的同时,保持探索新特征的能力。在分类阶段,通过改进损失函数来挖掘图像中的细微特征,利用局部判别损失函数使网络寻找具有判别力的局部区域特征。该算法在Herlev数据集上的七分类准确率达到了98.9%,对比其它算法有一定的提升,验证了该方法的有效性。