摘要
针对传统稀疏解混方法对丰度的稀疏性表征不充分及空间信息利用率低等问题,本文在分析迭代加权稀疏解混方法的基础上,提出了一种基于光谱加权协同稀疏和全变差正则化的高光谱解混方法.该方法一方面在协同稀疏解混的基础上引入光谱加权因子进一步刻画丰度系数的行稀疏性,以促进所有像元之间的联合稀疏性;另一方面引入各向异性全变差空间正则化促进图像同质区域的平滑性,以提高解混的准确性.通过交替方向乘子法求解该模型,通过迭代,利用内外部双循环迭代方法对光谱加权因子和丰度系数进行优化.模拟和真实的高光谱数据实验结果均表明本文提出的算法与现有同类算法相比能大幅提高混合像元分解的精度,在稀疏解混方面展现出了巨大的潜力.
-
单位江西省水信息协同感知与智能处理重点实验室; 南昌工程学院