摘要
针对高维复杂约束优化问题,提出了一种基于平滑技术和一维搜索的粒子群算法(NPSO)。该算法使粒子的飞行无记忆性,结合平滑函数和一维搜索重新生成停止进化粒子的位置,增强了在最优点附近的局部搜索能力;定义了不可行度阈值,利用此定义给出了新的粒子比较准则,该准则可以保留一部分性能较优的不可行解微粒,使微粒能快速的找到位于约束边界或附近的最优解;最后,为了扩大粒子的搜索范围,引进柯西变异算子。仿真结果表明,对于复杂约束优化问题,算法寻优性能优良,特别是对于超高维约束优化问题,该算法获得了更高精度的解。
- 单位