摘要

快速测定土壤有机质含量对作物生产和土壤肥力评价具有重要意义,红外光声光谱技术的应用为土壤有机质快速测定提供了可能。本研究以江苏省南京市溧水区水稻土土样为材料,探究了红外光声光谱技术在有机质测定中的应用。采用主成分分析、偏最小二乘和独立成分分析,分别提取了土壤光谱的主成分、偏最小二乘潜变量和独立成分,并以提取的信息输入支持向量机,从而构建了三种支持向量机校正模型。同时,偏最小二乘也被用于建立校正模型,作为支持向量机模型的对照。预测结果表明,基于独立成分的支持向量机模型效果最好,预测相关系数R2、均方根误差RMSEP和实际测量值的标准差与光谱模型预测值标准差的比值即RPD值分别为0.808、0.575和2.28。F检验表明,该模型显著优于基于主成分的支持向量机模型,但与基于偏最小二乘潜变量的支持向量机模型,以及经典偏最小二乘模型没有显著差异。t检验表明,各校正模型对有机质的预测结果与化学测定结果没有显著差异。因此,红外光声光谱技术为土壤有机质的快速测定提供了新的技术手段。