摘要

提出了基于一种自适应抽样和增强径向基插值的自适应代理模型方法,这种自适应抽样方法以确定适量的样本点数量和提高代理模型自适应能力为目的,使新增样本点位于设计空间的稀疏区域并确保所有的样本点均匀分布于设计空间以提高代理模型精度。标准误差用来判断代理模型的精度大小并决定是否对代理模型进行更新。一种条件随机抽样被用来对比本文的自适应抽样方法。经过对比验证发现,采用自适应抽样方法的代理模型精度比条件随机抽样方法的代理模型精度高。这种自适应代理模型结合多岛遗传算法被用来优化旋翼臂的碳纤维增强环氧树脂复合材料铺层角度使得旋翼臂的一阶模态频率最大。优化结果表明,不同的碳纤维增强环氧树脂复合材料铺层角度对旋翼臂的一阶模态频率值影响较大,优化结果获取了最优铺层角度,旋翼臂的一阶模态频率值被提高以远离激励频率而避免旋翼飞机的共振。

全文