摘要
激波风洞地面试验对高超声速飞行器高焓气动特性研究至关重要,而高精度气动力测量是其中的关键技术.在脉冲型激波风洞中进行测力试验时,风洞起动时流场瞬间建立,对测力系统会产生较大的冲击.测力系统在瞬时冲击作用下受到激励,系统的惯性振动信号在短时间内无法快速衰减,天平的输出信号中会包含惯性振动干扰量,导致脉冲型风洞测力试验精准度的进一步提高遇到瓶颈.为了解决短试验时间内激波风洞快速准确测力问题,发展高精度的动态校准技术是提升受惯性干扰天平性能的关键方法.因此,本文采用循环神经网络对天平动态校准数据进行训练和智能处理,旨在消除输出动态信号中的振动干扰信号.本文对该方法进行了误差分析,验证了该方法的可靠性,并将该方法应用于激波风洞测力试验中,切实有效降低了惯性振动对天平输出信号的干扰影响.根据智能模型的样本验证分析,各分量载荷相对误差比较小,其中高频轴向力分量处理结果的相对误差约1%.在风洞试验数据验证中,也得到了比较理想的结果,同时与卷积神经网络模型处理的结果进行了对比分析.
-
单位高温气体动力学国家重点实验室; 中国科学院大学; 中国科学院力学研究所