摘要

基于近红外光谱结合偏最小二乘法(Partial least squares, PLS),与自组织映射(Self-organizing map, SOM)神经网络联用,构建鲜乳与掺假乳的模式识别模型。样品光谱经偏最小二乘法处理后,提取7个主成分,使用47个吸收峰数据输入网络。确定竞争层结构为[20×5],训练步数300步时,网络模型性能稳定,能够同时识别分别掺有乳清粉、粉末油脂,以及两者皆有的掺假乳。网络预测结果良好,对掺有粉末油脂的掺假乳识别准确率达100%;对掺有乳清粉的掺假乳识别准确率达97.5%;对同时掺有乳清粉和粉末油脂的掺假乳识别准确率达95%。该方法可为鲜乳和掺假乳的快速鉴别方面,为乳品质量评价提供了新思路。