摘要

医学命名实体识别任务是对电子病历中的医学实体进行自动识别和分类,对于下游任务例如信息检索、知识图谱等有着十分重要的作用。现有的方法忽略了实体间的依赖性,因此,本文提出了一种基于门控注意力单元的模型,首先利用预训练模型MC-BERT捕捉上下文语境信息,再利用交叉注意力和门控注意力单元提高实体查询和上下文语义之间的交互性,并提取实体间的依赖关系和关联性,最后,利用二分图的匹配算法,计算模型训练中的损失。本文在CMeEE、CMQNN和MSRA数据集上进行了实验,实验结果表明本文模型在3个数据集上的F1值分别达到了70.74%,96.92%和95.53%,优于其他相关模型,证明了本文模型在中文医学命名实体识别任务上的有效性。