摘要

酿酒葡萄一般批量采收,采收期对其品质有较大影响。传统方法主要依靠对样本的酚、糖等各组分含量进行实验室理化指标检测,判定采收成熟度。如果对多个地块进行采摘前的连续监测,则批量大、成本高、采样与分析工作量繁重,且时效性差,难以保证果品的收获品质。以蛇龙珠品种为对象,提出一种利用近地面多光谱图像对种植区葡萄成熟度和批量采收期判别的方法。通过DJI Phantom四旋翼无人机搭载ADC Micro多光谱相机,以S型采样路线直接拍摄9个采样点的蛇龙珠田间原位图像,并采集葡萄果粒样本;利用PixelWrench2 x64软件进行图像处理,得到每张图像的红色(R)分量、绿色(G)分量、近红外(NIR)分量值;将葡萄果粒榨汁,依据检测时长、成本和代表性程度,选取总糖含量为成熟度判定指标,采用PAL-1手持式糖度仪检测葡萄汁总糖含量;分别分析R, G, NIR分量与日期的显著性关系,发现叶片集中区域(局部)的R分量与日期为最显著关系(p-value=5.314 44×10-4,调整后R2=0.815),可作为建模的成熟度参数;按照模型集与验证集为4∶1的原则构建"总糖含量—局部R分量"线性回归与对数回归模型,结果显示:相比于线性模型,总糖含量与局部R分量呈非常显著的对数关系(p-value=5.124 07×10-10,调整后R2=0.970 62),且该模型的平均预测误差≤1.388%、最大预测误差≤4.6%、采收前预测误差±0.46%,证明该对数模型具有较高的检测精度。实际采收前,利用上述方式在近采收期采集蛇龙珠葡萄田间原位多光谱图像,将得出的局部R分量值带入对数模型,可对总糖含量进行预测,并以22%±0.46%的总糖含量为标准研判蛇龙珠葡萄是否成熟。结果表明:采用区块光谱图像进行酿酒葡萄的批量采收品质和采收时间预测具有便利性与可行性,为光谱图像在农业实际生产中的应用提供了新思路。