摘要

快速稳定地发现复杂网络中的社团是近年来社团划分研究的热点。标签传播算法(LPA)具有接近线性的时间复杂度,能快速发现复杂网络中的社团结构,但是该算法在标签传播过程中存在不确定性和随机性,降低了划分结果的准确性和稳定性。为了解决这一问题,设计了一种稳定的标签传播社团划分算法(S-LPA)。该算法利用改进的K-Shell算法来计算节点全局影响力,并结合能反映节点局部影响力的度值以及邻居节点信息,计算节点综合影响力;在标签传播过程中,根据标签影响力更新标签;当网络中所有节点的标签不再变化或者迭代次数达到最大值时,拥有相同标签的节点划分到同一社团中。在真实网络和人工合成网络上的实验结果表明,S-LPA算法不仅具有线性时间复杂度,而且提高了社团划分的质量和稳定性。