摘要
茶是一种让人喜爱的健康饮品,不同品种的茶叶其功效和作用是不相同的。研究出一种可靠、简单易行、分类速度快的茶叶品种鉴别方法具有重要的意义。在模糊非相关判别转换(FUDT)算法和模糊C均值聚类(FCM)算法的基础上提出了一种模糊非相关鉴别C均值聚类(FUDCM)算法。FUDCM可以在聚类过程中动态提取光谱数据的模糊非相关鉴别信息。用FTIR-7600型傅里叶红外光谱分析仪分别采集优质乐山竹叶青、劣质乐山竹叶青和峨眉山毛峰三种茶叶的傅里叶中红外光谱,波数范围为4 001.569401.121 1cm-1。先用多元散射校正(MSC)进行光谱预处理,然后用主成分分析法(PCA)将光谱数据降维到20维,再利用线性判别分析(LDA)提取光谱数据中的鉴别信息。最后分别运行FCM和FUDCM进行茶叶品种鉴别。实验结果表明:当权重指数m=2时,FCM的聚类准确率为63.64%,FUDCM的聚类准确率为83.33%;FCM经过67次迭代计算实现了收敛,而FUDCM仅需17次迭代计算就可以实现收敛。用傅里叶红外光谱技术结合主成分分析、线性判别分析和FUDCM的方法能快速、有效地实现茶叶品种的鉴别分析,且鉴别准确率比FCM更高。
- 单位