摘要

针对电机滚动轴承故障检测的复杂性,采用了理论成熟且应用较多的BP神经网络和RBF神经网络两种故障诊断方法。首先通过经验模态分解的方法对滚动轴承的振动信号进行故障特征提取,并将故障特征向量输入到BP神经网络和RBF神经网络进行达标训练,最后对两种神经网络在滚动轴承故障诊断方面进行了比较分析,结果表明,两种神经网络的故障诊断效果均理想,但是RBF神经网络故障诊断结果较准且训练速度快,具有一定的优越性。

  • 单位
    华北科技学院