摘要

气体绝缘组合电器(GIS)目前得到了广泛的应用,因此对GIS各种放电特点和故障识别的研究具有重要意义。论文提出了基于自适应神经模糊的GIS局部放电检测与缺陷模式识别方法,建立了相应的神经模糊推理系统,设计GIS局部放电实验系统并完成了局部放电数据的采集,在选取并处理相应的放电特征输入至系统后,根据系统输出的结果判别GIS缺陷类型。实验结果表明,相比于目前应用广泛的BP神经网络和RBF神经网络,论文提出的GIS局部放电检测和缺陷模式识别方法在识别率高出多个百分点,识别结果更为可靠,在故障诊断方面具有一定的现实意义。