摘要
激光诱导击穿光谱技术(LIBS)用于检测时,由于谱线多且复杂,存在许多冗余的信息,这些都会对定量分析造成影响。因此,提取有效的特征变量在LIBS的定量分析中具有非常重要的意义。对CaCl2溶液中的Ca元素进行光谱特征选择方法分析,对比单变量模型、偏最小二乘回归和CART回归树定标模型的准确度和稳定性。针对水体表面的波动性较大,光谱稳定性差,同时光谱受基体效应和自吸收效应影响等问题,首先采用单变量模型得到的拟合系数(R2)仅有0.933 2,训练均方根误差(RMSEC)、预测均方根误差(RMSEP)和平均相对误差(ARE)分别为0.019 2 Wt%, 0.017 7 Wt%和11.604%。经偏最小二乘回归优化后,模型R2提高到0.975 3, RMSEC, RMSEP和ARE分别降低到0.010 8 Wt%, 0.013 Wt%和7.49%。为了进一步提高定量分析的准确度,建立CART回归树定标模型。该方法在构建树模型时,通过平方误差最小化准则,从复杂的光谱信息中选取最优的特征变量组合做分类决策,从而建立Ca元素的定标曲线。通过CART回归树的变量选择,特征变量个数从100个减少到6个,变量的压缩率达到了94%,显著降低了无关谱线的干扰,回归树模型的相关系数R2, RMSEC,RMSEP和ARE分别为0.997 5, 0.003 5 Wt%, 0.006 1 Wt%和2.500%。相较于传统的单变量模型与偏最小二乘回归,CART回归树模型具有更高的精度、更小的误差。通过对特征变量的有效筛选,剔除无关信号的干扰,显著降低了基体效应和自吸收效应对LIBS定量分析的影响,提高了定量分析的准确度和稳定性。
-
单位电子工程学院; 长春工业大学; 吉林建筑大学城建学院; 机电工程学院