摘要

虚假评论识别在电子商务、社交媒体等领域具有重要的应用价值。尽管现有虚假评论识别模型融合了文本的情感信息,但在预训练过程中忽视了对情感信息的提取,导致准确率不高。针对此问题,本文提出一种基于情感信息预处理和双向门控循环单元(Bidirectional Gated Recurrent Unit, Bi-GRU)的虚假评论识别模型(FR-SG),用于提高虚假评论识别的准确率。首先,通过Albert模型获取文本的语义向量;然后,使用词频-逆文本频率(Term Frequency-Inverse Document Frequency, TF-IDF)和K-均值(K-means++)聚类的方法从评论中挖掘情感种子词,基于种子词对文本中的属性词和情感词进行掩码(mask);接着,使用面向情感的目标优化函数,将情感信息嵌入到语义表示中,生成情感向量;最后,将这两组向量的拼接结果输入虚假评论识别网络中,得到文本的分类结果。实验结果表明,相较于Bi-GRU+Attention模型,FR-SG提高了虚假评论识别的准确率。