摘要
基于足绑式惯性测量单元(IMU)的惯性导航系统被广泛应用于行人导航中,其通过零速修正(ZUPT)算法可对速度估计误差进行较好的补偿,然而其位置误差会随时间发散。针对于此,提出了一种基于室内合作场景智能识别的行人导航算法。通过随机森林算法,对行人在室内平地步行、上楼梯、下楼梯等不同步态进行训练与辨识,并结合室内先验地图对行人导航的结果进行校正。通过实验表明,行人在室内行走1100m时最大定位误差为1.85m(总行程0.17%),相对无场景识别的方法精度提高了6倍,可以有效提高行人导航精度。
-
单位自动化学院; 南京航空航天大学