摘要
人脸动作编码系统从人脸解剖学的角度定义了一组面部动作单元(action unit,AU),用于精确刻画人脸表情变化。每个面部动作单元描述了一组脸部肌肉运动产生的表观变化,其组合可以表达任意人脸表情。AU检测问题属于多标签分类问题,其挑战在于标注数据不足、头部姿态干扰、个体差异和不同AU的类别不均衡等。为总结近年来AU检测技术的发展,本文系统概述了2016年以来的代表性方法,根据输入数据的模态分为基于静态图像、基于动态视频以及基于其他模态的AU检测方法,并讨论在不同模态数据下为了降低数据依赖问题而引入的弱监督AU检测方法。针对静态图像,进一步介绍基于局部特征学习、AU关系建模、多任务学习以及弱监督学习的AU检测方法。针对动态视频,主要介绍基于时序特征和自监督AU特征学习的AU检测方法。最后,本文对比并总结了各代表性方法的优缺点,并在此基础上总结和讨论了面部AU检测所面临的挑战和未来发展趋势。
- 单位