摘要

针对目前电动车头盔小目标检测的精度低、鲁棒性差,相关系统不完善等问题,提出了基于改进YOLOv5s的电动车头盔检测算法。所提算法引入卷积块注意力模块(CBAM)和协调注意力(CA)模块,采用改进的非极大值抑制(NMS),即DIoU-NMS(Distance Intersection over Union-Non Maximum Suppression);同时增加多尺度特征融合检测,并结合密集连接网络改善特征提取效果;最后,建立了电动车驾驶人头盔检测系统。在自建的电动车头盔佩戴数据集上,当交并比(IoU)为0.5时,所提算法的平均精度均值(mAP)比原始YOLOv5s提升了7.1个百分点,召回率(Recall)提升了1.6个百分点。实验结果表明,所提改进的YOLOv5s算法更能满足在实际情况中对电动车及驾驶员头盔的检测精度要求,一定程度上降低了电动车交通事故的发生率。