本文采用独立分量(ICA)分析对不同思维作业的脑电(EEG)信号进行预处理,再用自回归(AR)参数模型提取EEG信号特征,最后利用BP网络完成对特征样本集的训练和分类。实验结果表明,所采用的方法提高了脑电思维模式作业的准确度,对两种到五种不同思维作业未经训练的数据的平均分类准确度达到79%以上,超过现有文献报道的结果。