摘要

现有场景分割方法主要依赖于图像亮度、颜色和纹理等特征,然而在雾天图像中提取这些特征将变得困难且不稳定.基于此本文提出了适用于雾天图像场景分割的特征矢量,以及相应的特征提取算法.特征矢量由目标偏振度、深度和颜色三部分组成.特征提取算法分别为:用去相关的方法从图像偏振度分离出大气偏振度和目标偏振度;根据雾天退化模型和雾天图像偏振表示形式推导出场景深度信息;利用两幅偏振图像求出非偏振彩色图像,从而得到场景的颜色信息.将这些特征构成的特征矢量用于基于图的分割算法中,并从两个方面比较了仅使用颜色特征和使用本文特征矢量的分割结果.最后得出结论:对于雾天图像而言,这些特征比通常的颜色特征更加有效和鲁棒.