摘要
滚动轴承故障诊断的关键是敏感故障特征的提取。模糊熵(Fuzzy Entropy,FE)是一种检测时间序列复杂程度的方法,已广泛应用于故障诊断。由于机械系统的复杂性,振动信号的随机性表现在不同尺度上,因此需要对振动信号进行多尺度的模糊熵分析。在此基础上,提出了基于经验模态分解(Empirical Mode Decompose,EMD)和模糊熵的滚动轴承故障诊断方法。首先,采用EMD方法对振动信号进行分解,得到不同尺度的内禀模态函数(Intrinsic Mode Function,IMF)并计算包含主要故障信息的IMF分量的模糊熵;其次,对IMF分量的模糊熵值进行基于样本分位数的特征提取;最后,将分位数值作为特征向量,输入基于优化算法的支持向量机。将该方法应用于滚动轴承实验数据,分析结果表明,此方法可有效实现滚动轴承的故障诊断。