摘要

目的:利用3D深度残差网络和多模态MRI实现对脑胶质瘤的自动分级。方法:利用BraTS2020公共数据集的293例高级别胶质瘤(HGG)和76例低级别胶质瘤(LGG)的多模态MRI数据训练和测试3D深度残差卷积网络模型。多模态MRI图像经过3D剪裁、重采样和归一化的预处理,随机分组为训练(64%)、验证(16%)和测试(20%)样本,将预处理后的多模态MRI图像和分级标注输入到网络模型进行训练、验证和测试。利用准确率(ACC)和受试者工作特征(ROC)曲线下面积(AUC)评价分级结果。结果:在59例(48例HGG和11例LGG)验证数据集上,ACC和AUC分别为0.93和0.97,在75例(62例HGG和13例LGG)测试数据集上,ACC和AUC分别为0.89和0.93。结论:3D深度残差网络在多模态MRI数据集上获得了较好的脑胶质瘤自动分级结果,可以为确定治疗方案和预测预后方面提供重要参考。