摘要

针对直线振动筛早期激振力不平衡故障难以诊断问题,提出了一种基于变分模态分解(VMD)和递归量化分析(RQA)的故障诊断方法。对振动信号进行VMD分解,将直线振动筛基频信号分离,并得到被淹没的各阶高频分量;绘制不同信号分量的动力特性递归图,计算递归图的量化指标,组成故障信号的非线性、非平稳性评价特征向量,将高维特征向量输入机器学习分类器中进行识别诊断,并与传统的特征提取方法比较。试验结果表明:在直线振动筛激振力不平衡故障现场,该方法所提取的特征参数具有最高识别精度,综合识别率为99.13%;且应用于旋转机械滚动轴承实例数据,综合识别率为99.38%,说明该方法具有一定的通用性和工程应用价值。

全文