摘要

针对皮带机齿轮箱轴承声信号受混响及其他部件运行噪声干扰严重导致声学诊断困难的问题,分析了声信号组成、混响产生原因、信号传递路径及各干扰成分特点,提出了一种结合卡尔曼滤波与最优子带选取的声信号特征增强方法。首先,依据最大峭度准则设定了卡尔曼滤波超参数,通过卡尔曼滤波减少了混响噪声对轴承故障声信号的干扰;然后,采用小波包降噪算法对去混响后的信号进行了处理,对比了待测状态与正常状态信号子带的能量差异,选取了包含故障信息多的最优子带,通过包络谱分析提取了轴承故障特征;最后,通过轴承故障模拟试验对基于卡尔曼滤波与小波包子带选取方法的有效性进行了验证,并将其与改进奇异值分解(ISVD)与共振稀疏分解(RSSD)结合的方法进行了比较。研究结果表明:该方法的去混响和降噪效果显著,包络谱中含有明显的故障频率及其相关成分。采用基于卡尔曼滤波与子带选取的方法可以实现在室内测量环境下的轴承声信号增强目的,准确提取轴承故障特征。