摘要

LDA没有考虑到输入,在原始的输入空间上对每一个词进行主题标签,因保留非作用词,而影响了主题概率分布。针对这种情况提出了一种m RMRLDA算法,预先使用m RMR特征选择算法将输入空间映射到低维空间,过滤掉非作用词,使得LDA能在更简洁和更清晰的空间上进行主题标签,得到更精确的主题分布。对20 Newsgroups语料库和复旦大学语料库进行分类,分类精度分别提高了1.53%和1.18%,实验结果表明提出的m RMRLDA模型在文本分类中有较好的分类性能。