摘要

准确的风速预测在风能转换和电力分配中起着至关重要的作用.但是,风的固有间歇性使其难以实现高精度的预测.现有研究方法大都考虑了风速的时间相关性,但忽略了气象因素随空间变化对风速的影响.为获得准确可靠的预测结果,结合卷积神经网络和长短期记忆网络,提出了一种多因素时空风速预测相关(MFSTC)模型.同时,还构建了一种基于三维矩阵的数据表示方法.针对多个站点,利用改进的PCA-LASSO算法提取特征气象要素,然后,采用卷积神经网络建立各个站点之间的空间特征关系,采用长短期记忆网络建立历史时间点之间的时间特征关系,在时空相关性分析的基础上得到最终风速预测结果.在东营气象中心提供的2009–2018共10年的实测风速数据集上进行了实验验证.结果表明,相比于一般预测方法,由MFSTC模型获得的实验结果更加准确,证明了提出方法的有效性.