摘要

标签噪声广泛存在、无法避免且影响深度网络模型的性能.利用神经网络的“记忆效应”,基于小损失原则的样本选择方法能简单有效地处理标签噪声.本文基于特征空间中样本距离越近越相似的原则,结合样本的高低置信度假设,提出了新的样本选择原则以及二阶段加权样本选择重标签方法 (WSSR-2s).(1)在训练前期阶段,对于高置信度样本,在特征空间中对其票权进行加权,更好地引导训练;(2)在训练中后期阶段,对于低置信度样本,将其票权转移给其最相似的特征样本,以更正确地训练.在合成噪声数据集CIFAR-10、CIFAR-100以及真实噪声数据集ANIMAL-10N、WebVision的实验结果表明,本文提出的方法取得更高的精度,能够更好地处理标签噪声问题.

全文