摘要

以加速踏板开度、加速踏板开度变化率为输入参数,将加速意图分为缓加速、一般加速和急加速,建立了基于支持向量机的电动汽车驾驶意图识别模型。为了解决粒子群算法优化支持向量机参数时寻优范围的不确定性,导致搜索效率不稳定的问题,提出了一种自适应粒子群算法:先通过网格搜索法确定出粒子群算法参数寻优的最佳范围,再由粒子群算法在此范围精确寻优,最后得到了更高准确率的分类结果和缩短了的训练时间。通过仿真实验验证,运用这种自适应粒子群优化支持向量机建立的预测模型辨识度高,模型准确可靠,为驾驶意图的识别提供了新的方法。驾驶意图识别的结果可用于后续的纯电动汽车驱动控制策略的研究,进一步提高汽车的驾驶性能。