摘要

针对高精度谐振式露点测量系统中电路故障诊断问题,提出了一种基于改进的麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)优化智能分类器参数的电路故障诊断模型,采用测前仿真故障诊断方法中的智能诊断方法,选择适用于小样本、非线性问题的支持向量机(Support Vector Machine, SVM)作为智能分类器,针对麻雀搜索算法中收敛速度慢、易陷入局部最优等问题进行改进,并将改进后的优化算法用于SVM参数寻优,构建ISSA-SVM故障诊断模型用于谐振电路故障诊断。实验结果显示,ISSA-SVM模型在建立的电路上能够达到88.9%的故障诊断率,可靠性较强,能够作为高精度谐振式露点传感器电路的故障诊断方法。