摘要

针对当前大坝位移预测研究中对大坝变形影响因子考虑欠缺的问题,将卷积神经网络与典型机器学习算法相融合对大坝位移进行预测。结合某大坝2018年3月1日至2022年5月1日的监测数据进行研究,并将大坝位移预测值与经典随机森林预测结果、支持向量机预测结果进行比较,结果表明融合卷积神经网络后的模型比单一模型具有更高的预测精度和更小的预测误差,模型预测性能更好。