摘要
散热器外壳是电子产品散热器的主要零件之一,由于壁薄,在注塑成型中经常出现壁厚不均、翘曲变形和熔接痕等缺陷。针对该问题,以熔体温度、模具温度、冷却时间、注射压力、注射时间、保压压力和保压时间7个工艺参数为输入量,注塑件的翘曲量作为输出量,建立RBF神经网络模型;利用均匀试验所得的数据作为样本对神经网络进行训练和测试,得到注塑工艺参数与塑件翘曲变形量之间的非线性映射关系。结合遗传算法对工艺参数进行优化,获得最佳的工艺参数为:熔体温度234. 4℃、模具温度31. 5℃、冷却时间23. 8 s、注射压力128. 3 MPa、注射时间4. 7 s、保压压力93. 0 MPa、保压时间14. 1 s,获得预测的最小翘曲变形值为0. 331 875 mm,并使用优化后的工艺参数进行试验。试验结果表明,优化后产品的最大翘曲变形量降低至0. 318 9 mm,与优化前均匀试验所得的0. 378 1 mm相比,得到了明显的改善,降低了15. 7%。
-
单位机电工程学院; 江苏师范大学