融合机器视觉与性能分析的运营盾构隧道结构安全状态评价

作者:周鸣亮; 汪长松*; 黄宏伟; 程文; 邵华; 张东明
来源:应用基础与工程科学学报, 2023, 31(06): 1461-1476.
DOI:10.16058/j.issn.1005-0930.2023.06.007

摘要

在地铁盾构隧道运维过程中,隧道结构变形和衬砌表观病害是常见的两大类结构安全状态评价指标.为了平衡专家评价的主观性和物理力学模型的客观性,提出了融合机器视觉结构病害检测信息和不同病害下结构性能分析的隧道安全状态评价方法,基于隧道工程专家对于不同分类病害权重比例的评估,同时综合了位置、面积、体积等细化指标对于各项病害的加权影响.该评价方法以移动激光扫描获取的三维点云作为数据基础,通过椭圆拟合计算出盾构隧道横断面的收敛变形值、椭圆度以及环间错台值,采用提出的深度学习模型对衬砌表观的渗漏水和剥落病害进行自动化识别和量化,基于有限元数值模拟分析量化了渗漏水以及剥落病害在不同位置的安全状态权重,并通过信息熵法确定了横向收敛变形以及椭圆度两种病害的权重,得到了隧道结构安全状态评价公式.最后采用无监督机器学习Kmeans++聚类算法得到了安全状态分级的阈值,现场实例验证结果表明,提出的评价方法在效率、客观、全面性等方面均体现了一定的优越性,能够为盾构隧道维保部门制定运维决策提供参考.

  • 单位
    岩土及地下工程教育部重点实验室; 同济大学; 上海地铁维护保障有限公司; 土木工程学院

全文