摘要
针对当前柑橘果实目标检测模型多数需在服务器上运行,难以直接在果园部署且识别实时性较差等问题,设计了基于边缘计算设备的便携式柑橘果实识别系统。该系统由优化的目标检测模型和嵌入式智能平台组成;通过扩展YOLOv4–Tiny目标检测算法,将所有批量归一化层合并到卷积层,加快模型前向推理速度;采用多尺度结构并使用K–means聚类方法获得柑橘数据集的先验框大小,使网络模型对柑橘果实识别具有更强的鲁棒性;使用GIOU距离度量损失函数,使网络模型更加关注柑橘图像中重叠遮挡的区域。将改进算法部署到嵌入式平台Jetson nano,试验结果表明,识别系统对柑橘果实的识别平均准确率达93.01%,单幅图片的推断时间约为150 ms,对视频的识别速率为16帧/s。
-
单位华南农业大学; 电子工程学院