摘要
深度学习促进了自然语言处理技术的发展,基于文本生成的信息隐藏方法表现出了巨大的潜力.为此,提出了一种基于神经机器翻译的文本信息隐藏方法,在翻译文本生成过程中进行信息嵌入.神经机器翻译模型使用集束搜索(Beam Search)解码器,在翻译过程中通过Beam Search得到目标语言序列各位置上的候选单词集合,并将候选单词依据概率排序进行编码;然后在解码输出目标语言文本的过程中,根据秘密信息的二进制比特流选择对应编码的候选单词,实现以单词为单位的信息嵌入.实验结果表明,与已有的基于机器翻译的文本信息隐藏方法相比,该方法在隐藏容量方面明显提升,并且具有良好的抗隐写检测性和安全性.
- 单位