摘要
作为中国商品粮的主要生产基地,东北地区频发的低温冷害给中国粮食安全带来了严重的影响,及时、准确和大范围评估低温冷害灾损是降低损失、快速恢复生产的重要前提。本文以鄂伦春为例,提出了一种快速评估低温冷害对大豆生产影响的新方法。首先诊断出该地区典型冷害事件发生的年份为1989年、1995年、2003年、2009年和2018年;然后基于本地化后CROPGRO-Soybean模型设置512组低温冷害和田间管理组合模拟情景;其次构建了1600组包括3个变量(有效积温距平值(CDD)、模拟的叶面积植被指数(LAI)和产量)的冷害脆弱性模型;最后依托Google Earth Engine(GEE)平台逐像元提取大豆关键生育期早晚窗口内最大的宽动态植被指数(WDRVI)及对应的日期(DOY),将WDRVI转化为大豆种植格点的实际LAI,结合构建的冷害脆弱性模型逐像元计算出产量和减产率。主要发现如下:①校准后的CROPGRO-Soybean模型能较为准确地模拟不同冷害情景下的大豆生长发育过程;②大豆遭受全生育期的降温情景(1~3℃)的减产幅度比局部降温情景(4个生育期随机生成连续5日温度为0℃)的减产幅度大;③历史冷害年1989年、1995年、2003年、2009年平均减产率约为9.6%、29.8%、50.5%和15.7%,与实际6.4%、39.2%、47.7%和13.2%的减产率相比,冷害灾损评估结果具有较好的精度且误差均在一倍方差以内;④运用该方法评估2018年冷害田间尺度的产量损失,并利用Sentinel-2A影像进行10 m高精度制图。结果显示,该方法能够快速、准确地评估不同尺度的低温冷害灾损情况,为作物估产以及农作物灾害损失评估的业务化运行提供了新的思路。
-
单位地表过程与资源生态国家重点实验室; 中国科学院; 北京师范大学; 中国科学院地理科学与资源研究所