摘要
针对跨工况下无监故障诊断特征提取难、模型泛化性弱的问题,提出一种基于对称式对比学习策略的齿轮箱无监督故障诊断方法。首先,利用原始信号构建正负样本集,通过加噪声、序列倒转等数据增强后,分别输入两个结构相同的卷积神经网络提取高维特征;其次,度量正负样本的相似程度进行编码学习数据的隐藏表示,通过对称式自监督对比学习优化正负样本的对比估计损失函数,从而有效利用样本自身标签信息,提升网络从无标签样本中学习判别特征的能力;最后,在齿轮箱数据集上对所提方法开展试验验证,通过聚类准确率、分类系数和划分熵进行综合评估。结果表明,所提方法聚类精度可达98%以上,相比其他方法,呈现了更强的聚类能力和泛化性能。
- 单位