摘要
针对车辆动态称重系统测量精度较低的问题,提出基于遗传算法(genetic algorithms)和粒子群算法(particle swarm optimization)混合优化的BP神经网络(back propagation neural network)动态称重模型。首先利用小波变换对信号进行去噪滤波与信号重构。通过GA-PSO算法迭代寻优神经网络的权阈值,以滤波重构的动态车重、车速、轴数作为网络输入,拟合动态车重与静态车重间的非线性关系,可以使称重误差控制在1%以内。实验结果表明该模型精度高,可应用于工程实践。
-
单位中国计量大学; 机电工程学院