近邻法对不相关特征的敏感性很高,利用邻域重构系数可以保持原有数据结构的优点,为此,文中提出基于邻域保持学习的无监督特征选择算法.首先根据数据样本和邻域的相似性构造相似矩阵,并引入中间矩阵构造低维空间.然后利用拉普拉斯乘子法选择有效特征子集.在4个公开数据集上的实验表明,文中算法可以有效识别代表性特征.